This page describes how to run a cluster in multiple zones.
Kubernetes 1.2 adds support for running a single cluster in multiple failure zones (GCE calls them simply “zones”, AWS calls them “availability zones”, here we’ll refer to them as “zones”). This is a lightweight version of a broader Cluster Federation feature (previously referred to by the affectionate nickname “Ubernetes”). Full Cluster Federation allows combining separate Kubernetes clusters running in different regions or cloud providers (or on-premises data centers). However, many users simply want to run a more available Kubernetes cluster in multiple zones of their single cloud provider, and this is what the multizone support in 1.2 allows (this previously went by the nickname “Ubernetes Lite”).
Multizone support is deliberately limited: a single Kubernetes cluster can run in multiple zones, but only within the same region (and cloud provider). Only GCE and AWS are currently supported automatically (though it is easy to add similar support for other clouds or even bare metal, by simply arranging for the appropriate labels to be added to nodes and volumes).
When nodes are started, the kubelet automatically adds labels to them with zone information.
Kubernetes will automatically spread the pods in a replication controller
or service across nodes in a single-zone cluster (to reduce the impact of
failures.) With multiple-zone clusters, this spreading behavior is
extended across zones (to reduce the impact of zone failures.) (This is
achieved via SelectorSpreadPriority
). This is a best-effort
placement, and so if the zones in your cluster are heterogeneous
(e.g. different numbers of nodes, different types of nodes, or
different pod resource requirements), this might prevent perfectly
even spreading of your pods across zones. If desired, you can use
homogeneous zones (same number and types of nodes) to reduce the
probability of unequal spreading.
When persistent volumes are created, the PersistentVolumeLabel
admission controller automatically adds zone labels to them. The scheduler (via the
VolumeZonePredicate
predicate) will then ensure that pods that claim a
given volume are only placed into the same zone as that volume, as volumes
cannot be attached across zones.
There are some important limitations of the multizone support:
We assume that the different zones are located close to each other in the network, so we don’t perform any zone-aware routing. In particular, traffic that goes via services might cross zones (even if some pods backing that service exist in the same zone as the client), and this may incur additional latency and cost.
Volume zone-affinity will only work with a PersistentVolume
, and will not
work if you directly specify an EBS volume in the pod spec (for example).
Clusters cannot span clouds or regions (this functionality will require full federation support).
Although your nodes are in multiple zones, kube-up currently builds a single master node by default. While services are highly available and can tolerate the loss of a zone, the control plane is located in a single zone. Users that want a highly available control plane should follow the high availability instructions.
The following limitations are addressed with topology-aware volume binding.
StatefulSet volume zone spreading when using dynamic provisioning is currently not compatible with pod affinity or anti-affinity policies.
If the name of the StatefulSet contains dashes (“-”), volume zone spreading may not provide a uniform distribution of storage across zones.
When specifying multiple PVCs in a Deployment or Pod spec, the StorageClass needs to be configured for a specific single zone, or the PVs need to be statically provisioned in a specific zone. Another workaround is to use a StatefulSet, which will ensure that all the volumes for a replica are provisioned in the same zone.
We’re now going to walk through setting up and using a multi-zone
cluster on both GCE & AWS. To do so, you bring up a full cluster
(specifying MULTIZONE=true
), and then you add nodes in additional zones
by running kube-up
again (specifying KUBE_USE_EXISTING_MASTER=true
).
Create the cluster as normal, but pass MULTIZONE to tell the cluster to manage multiple zones; creating nodes in us-central1-a.
GCE:
curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-a NUM_NODES=3 bash
AWS:
curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2a NUM_NODES=3 bash
This step brings up a cluster as normal, still running in a single zone
(but MULTIZONE=true
has enabled multi-zone capabilities).
View the nodes; you can see that they are labeled with zone information.
They are all in us-central1-a
(GCE) or us-west-2a
(AWS) so far. The
labels are failure-domain.beta.kubernetes.io/region
for the region,
and failure-domain.beta.kubernetes.io/zone
for the zone:
kubectl get nodes --show-labels
The output is similar to this:
NAME STATUS ROLES AGE VERSION LABELS
kubernetes-master Ready,SchedulingDisabled <none> 6m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-1,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-master
kubernetes-minion-87j9 Ready <none> 6m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-87j9
kubernetes-minion-9vlv Ready <none> 6m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-a12q Ready <none> 6m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-a12q
Let’s add another set of nodes to the existing cluster, reusing the
existing master, running in a different zone (us-central1-b or us-west-2b).
We run kube-up again, but by specifying KUBE_USE_EXISTING_MASTER=true
kube-up will not create a new master, but will reuse one that was previously
created instead.
GCE:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-b NUM_NODES=3 kubernetes/cluster/kube-up.sh
On AWS we also need to specify the network CIDR for the additional subnet, along with the master internal IP address:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2b NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.1.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/cluster/kube-up.sh
View the nodes again; 3 more nodes should have launched and be tagged in us-central1-b:
kubectl get nodes --show-labels
The output is similar to this:
NAME STATUS ROLES AGE VERSION LABELS
kubernetes-master Ready,SchedulingDisabled <none> 16m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-1,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-master
kubernetes-minion-281d Ready <none> 2m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kubernetes.io/hostname=kubernetes-minion-281d
kubernetes-minion-87j9 Ready <none> 16m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-87j9
kubernetes-minion-9vlv Ready <none> 16m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-a12q Ready <none> 17m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-a12q
kubernetes-minion-pp2f Ready <none> 2m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kubernetes.io/hostname=kubernetes-minion-pp2f
kubernetes-minion-wf8i Ready <none> 2m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kubernetes.io/hostname=kubernetes-minion-wf8i
Create a volume using the dynamic volume creation (only PersistentVolumes are supported for zone affinity):
kubectl create -f - <<EOF
{
"kind": "PersistentVolumeClaim",
"apiVersion": "v1",
"metadata": {
"name": "claim1",
"annotations": {
"volume.alpha.kubernetes.io/storage-class": "foo"
}
},
"spec": {
"accessModes": [
"ReadWriteOnce"
],
"resources": {
"requests": {
"storage": "5Gi"
}
}
}
}
EOF
Note: For version 1.3+ Kubernetes will distribute dynamic PV claims across the configured zones. For version 1.2, dynamic persistent volumes were always created in the zone of the cluster master (here us-central1-a / us-west-2a); that issue (#23330) was addressed in 1.3+.
Now let’s validate that Kubernetes automatically labeled the zone & region the PV was created in.
kubectl get pv --show-labels
The output is similar to this:
NAME CAPACITY ACCESSMODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE LABELS
pv-gce-mj4gm 5Gi RWO Retain Bound default/claim1 manual 46s failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a
So now we will create a pod that uses the persistent volume claim. Because GCE PDs / AWS EBS volumes cannot be attached across zones, this means that this pod can only be created in the same zone as the volume:
kubectl create -f - <<EOF
kind: Pod
apiVersion: v1
metadata:
name: mypod
spec:
containers:
- name: myfrontend
image: nginx
volumeMounts:
- mountPath: "/var/www/html"
name: mypd
volumes:
- name: mypd
persistentVolumeClaim:
claimName: claim1
EOF
Note that the pod was automatically created in the same zone as the volume, as cross-zone attachments are not generally permitted by cloud providers:
kubectl describe pod mypod | grep Node
Node: kubernetes-minion-9vlv/10.240.0.5
And check node labels:
kubectl get node kubernetes-minion-9vlv --show-labels
NAME STATUS AGE VERSION LABELS
kubernetes-minion-9vlv Ready 22m v1.6.0+fff5156 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-9vlv
Pods in a replication controller or service are automatically spread across zones. First, let’s launch more nodes in a third zone:
GCE:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-f NUM_NODES=3 kubernetes/cluster/kube-up.sh
AWS:
KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2c NUM_NODES=3 KUBE_SUBNET_CIDR=172.20.2.0/24 MASTER_INTERNAL_IP=172.20.0.9 kubernetes/cluster/kube-up.sh
Verify that you now have nodes in 3 zones:
kubectl get nodes --show-labels
Create the guestbook-go example, which includes an RC of size 3, running a simple web app:
find kubernetes/examples/guestbook-go/ -name '*.json' | xargs -I {} kubectl create -f {}
The pods should be spread across all 3 zones:
kubectl describe pod -l app=guestbook | grep Node
Node: kubernetes-minion-9vlv/10.240.0.5
Node: kubernetes-minion-281d/10.240.0.8
Node: kubernetes-minion-olsh/10.240.0.11
kubectl get node kubernetes-minion-9vlv kubernetes-minion-281d kubernetes-minion-olsh --show-labels
NAME STATUS ROLES AGE VERSION LABELS
kubernetes-minion-9vlv Ready <none> 34m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-a,kubernetes.io/hostname=kubernetes-minion-9vlv
kubernetes-minion-281d Ready <none> 20m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-b,kubernetes.io/hostname=kubernetes-minion-281d
kubernetes-minion-olsh Ready <none> 3m v1.13.0 beta.kubernetes.io/instance-type=n1-standard-2,failure-domain.beta.kubernetes.io/region=us-central1,failure-domain.beta.kubernetes.io/zone=us-central1-f,kubernetes.io/hostname=kubernetes-minion-olsh
Load-balancers span all zones in a cluster; the guestbook-go example includes an example load-balanced service:
kubectl describe service guestbook | grep LoadBalancer.Ingress
The output is similar to this:
LoadBalancer Ingress: 130.211.126.21
Set the above IP:
export IP=130.211.126.21
Explore with curl via IP:
curl -s http://${IP}:3000/env | grep HOSTNAME
The output is similar to this:
"HOSTNAME": "guestbook-44sep",
Again, explore multiple times:
(for i in `seq 20`; do curl -s http://${IP}:3000/env | grep HOSTNAME; done) | sort | uniq
The output is similar to this:
"HOSTNAME": "guestbook-44sep",
"HOSTNAME": "guestbook-hum5n",
"HOSTNAME": "guestbook-ppm40",
The load balancer correctly targets all the pods, even though they are in multiple zones.
When you’re done, clean up:
GCE:
KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true KUBE_GCE_ZONE=us-central1-f kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true KUBE_GCE_ZONE=us-central1-b kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-a kubernetes/cluster/kube-down.sh
AWS:
KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2c kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2b kubernetes/cluster/kube-down.sh
KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2a kubernetes/cluster/kube-down.sh
Was this page helpful?
Thanks for the feedback. If you have a specific, answerable question about how to use Kubernetes, ask it on Stack Overflow. Open an issue in the GitHub repo if you want to report a problem or suggest an improvement.